

Mining and Metallurgical Institute named after O.A. Baikonurov «Mine Surveying and Geodesy» department

EDUCATIONAL PROGRAM 8D07309 - «Geomatics, Geodesy and Geospatial Sciences»

Code and classification of the field of education: 8D07 Engineering, Manufacturing and Civil engineering Code and classification of training areas: 8D073 Architecture and Civil engineering Group of educational programs: D123 Geodesy Level based on NQF: 8 Level based on IQF: 8 Study period: 3 years Amount of credits: 180

Алматы 2024

Educational program 8D07309 - «Geomatics, Geodesy and Geospatial Sciences» was approved at a meeting of the Academic Council of KazNRTU named after. K.I.Satpayev.

Protocol № 6 of 19.04.2024

Considered and recommended for approval at a meeting of the Educational and Methodological Council of KazNRTU named after K.I.Satpayev. Protocol № 12 of 22.04.2024

Educational program 8D07309 - «Geomatics, Geodesy and Geospatial Sciences » developed by the academic committee in the direction of « Geomatics, Geodesy and Geospatial Sciences»

Full name	Academic degree/ academic title	Position	Place of work	Signature
Academic staff:	10 S W S M	South Street States in		01
Orynbasarova E.O.	PhD	head of department	SU /	And A
Aitkazinova Sh.K.	PhD	Associate Professor	SU	Hathe
Kenesbayeva A.	PhD	senior lecturer	SU	Alles
Employer:		100000000000		
Aymenov A.T.	Fill.	Chief Engineer	Republican Cartographic Factory	hig
Student:			- Costa patri	1
Adilbekova L.K.	m.s.c.	1 st year doctoral student		At

Table of contents

List of abbreviations and designations

- 1. Description of the educational program
- 2. The purpose and objectives of the educational program
- 3. Requirements for evaluating the learning outcomes of an educational program
- 4. Passport of the educational program
- 4.1. General information
- 4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines
- 5. Curriculum of the educational program

Reduction	Full name
ECTS	European Credit Transfer and Accumulation System
NJSC SU	NJSC Satbayev university
MES RK	Ministry of Education and Science of the Republic of
	Kazakhstan
TS	Teaching staff
EP	Educational program
RO	Registrar's Office
WC of the EP	Working curriculum of the EP

List of abbreviations and designations

1. Description of the educational program

Training of scientific, technical and engineering personnel with world-class competencies in the field of digital technologies based on the integration of fundamental physical-mechanical and practice-oriented engineering education with research and development for geodesy, cartography, geoinformatics, land management and surveying.

2. The purpose and objectives of the educational program

Goal EP: creation, based on the integration of education and science, of an effective system for training scientific, scientific and pedagogical personnel of a new formation capable of solving issues of improving society, economy, production, science and the development of new technologies in the field of geodesy, geospatial digital engineering.

Tasks EP:

Task 1: The readiness of specialists for research and project work in the field of geodesy, cartography, geoinformatics, including in related fields related to the selection of necessary research methods, modification of existing and development of new methods based on the objectives of a specific study.

Task 2: The readiness of specialists to develop and implement methods of technologies at the local level to solve problems in the field of geospatial technologies.

Task 3: The readiness of specialists to search for and obtain new information necessary to solve professional tasks in the field of knowledge integration in relation to their field of activity, to actively participate in the activities of an enterprise or organization.

Task 4: The readiness of specialists for scientific, informational, ideological and problematic communications in the professional environment and in the audience of non-specialists with a clear and deep justification of their position, to engage in organizational, managerial and service activities, to be aware of the responsibility for making their professional decisions.

Task 5: The readiness of specialists for self-study and continuous professional development.

Task 6: Willingness to analyze scientific publications and to present in writing the results of their own research in accordance with accepted norms in a foreign language.

Task 7: Willingness to navigate in modern approaches, methods and means of study, as well as trends and ways of developing methods for solving the problem.

3. Requirements for the evaluation of learning outcomes of the educational program

Learning outcomes include knowledge, skills and competencies and are defined both for the general education program and for its individual modules, disciplines or tasks.

The main task at this stage is to choose methods and means of evaluation for all types of control, with the help of which it is possible to effectively assess the achievement of the planned learning outcomes at the subject level.

4. Passport of the educational program

4.1. General information

N⁰	Field name	Note
1	Code and classification of the	8D07 Engineering, Manufacturing and Civil engineering
	field of education	
2	Code and classification of	8D073 Architecture and Civil engineering
	training directions	
3	Educational program group	D123 Geodesy
4	Educational program name	8D07309 Geomatics, Geodesy and Geospatial Sciences
5	Short description of educational	Training of scientific, technical and engineering personnel
	program	with world-class competencies in the field of digital
		technologies based on the integration of fundamental
		physical-mechanical and practice-oriented engineering
		education with research and development for geodesy,
		cartography, geoinformatics, land management and
		surveying.
6	Purpose of EP	Creation, based on the integration of education and
		science, of an effective system for training scientific,
		scientific and pedagogical personnel of a new formation
		capable of solving issues of improving society, economy,
		production, science and the development of new
		technologies in the field of geodesy, geospatial digital
7	Type of EP	engineering. New EP
	The level based on NQF	8
9	The level based on IQF	8
-	Distinctive features of EP	o No
	List of competencies of	
	educational program	1
12		1.Analyze the trends of modern science, identify
14	educational program	promising areas of scientific research in the subject area
L	Concentional program	promising areas of scientific research in the subject area

		of professional activity, the composition of research
		papers, their determining factors.
		2.Use methods of mathematical, numerical and
		computer modeling in the analysis and solution of
		applied and engineering problems, exhibiting the skills
		of expanding their knowledge based on information and
		educational technologies.
		3.Gain in-depth knowledge in the subject area of
		professional activity, reflecting the current level of
		development.
		4.To form a conceptual worldview of the future scientist
		in terms of studying the spatial aspects of the
		surrounding world when making professional and/or
		managerial decisions.
		5.Use a mathematical and statistical approach to spatial
		problems, including methods from geoinformation
		systems and packages for statistical data processing.
		6.To be guided by modern approaches, methods and
		means of studying the shape and external gravitational
		field of the Earth and other planets, as well as trends and
		ways of developing methods for solving this problem.
		7. Analyze scientific publications and present in writing
		The results of their own research in accordance with
		the results of their own research in accordance with accepted norms in a foreign language.
13	Education form	the results of their own research in accordance with
14	Period of training	the results of their own research in accordance with accepted norms in a foreign language.
14 15	Period of training Amount of credits	the results of their own research in accordance with accepted norms in a foreign language. Full-time
14 15	Period of training	the results of their own research in accordance with accepted norms in a foreign language. Full-time 3 years
14 15	Period of training Amount of credits	the results of their own research in accordance with accepted norms in a foreign language. Full-time 3 years 180

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

N⁰	Name of the	Brief description of the discipline	Number of		Ge	nerated	learnin	g outcoi	nes (coo	les)	
	discipline		credits	LR1	LR2	LR3	LR4	LR5	LR6	LR7	LR8
		Cycle of ba	sic discipli	nes						v v	
		•	y compone								
1.	Academic writing	Content: fundamentals and general principles of academic writing, including: writing effective sentences and paragraphs, writing an abstract, introduction, conclusion, discussion, and references; in-text citation; preventing plagiarism; and preparing a conference presentation.	5				v			v	
2.	Methods of scientific research	Purpose: It consists in mastering knowledge about the laws, principles, concepts, terminology, content, specific features of the organization and management of scientific research using modern methods of scientometry. Contents: structure of technical sciences, application of general scientific, philosophical and special methods of scientific research, principles of organization of scientific research, methodological features of modern science, ways of development of science and scientific research, the role of technical sciences, computer science and engineering research in theory and practice.	5				v			v	

		Cycle of ba Elective	sic discipli componen				
1.	Mathematical methods in geodesy	Objective: Develop a profound understanding and skills in applying mathematical methods to solve problems in geodesy and geospatial sciences. Doctoral students will study essential mathematical techniques, including numerical methods, error theory, and linear and nonlinear optimization, used in geodetic calculations and spatial data analysis. The focus will be on applying these methods to solve scientific and applied challenges, such as precise coordinate determination, earth surface modeling, deformation analysis, and other engineering tasks, including geodetic work in construction. Students will also explore the software and computational technologies necessary for effective problem-solving.	5	v		V	
2.	Geographic Information Systems and Machine Learning	Objective: Master the methods and tools of geographic information systems (GIS) and machine learning for spatial data analysis and the resolution of applied problems in geodesy and geospatial sciences. Doctoral students will learn both basic and advanced GIS techniques, including data collection, processing, and visualization. They will also master machine learning algorithms applied to spatial data to automate and enhance analysis accuracy. The course	5	V	v		

1										1	
		emphasizes practical applications of									
		GIS and machine learning for scientific									
		and practical issues in geodesy and									
		geomatics, including terrain modeling,									
		land use analysis, natural phenomenon									
		forecasting, and infrastructure project									
		optimization.									
3.	Intellectual property	The goal is to train specialists in the	5					v	v		
	and the global	field of intellectual property law who									
	market	can analyze and predict trends in its									
		development in the global market,									
		develop strategies for the protection and									
		commercialization of intellectual									
		property.									
		Contents: global aspects of intellectual									
		property and its role in international									
		trade and economics, analysis of									
		international agreements and									
		conventions, IP management strategies,									
		cases of protection and violation of									
		intellectual property rights in various									
		jurisdictions.									
	·	Cycle of pro	ofile discipl	ines						•	
		Elective co									
1.	Integration of	Equip doctoral students to effectively	5		v	v					
	Artificial	use artificial intelligence (AI) methods									
	Intelligence into	to enhance accuracy and efficiency in									
	Geospatial	geospatial modeling for scientific and									
	Modeling	applied research. Students will master									
	in a ching	fundamental and advanced AI									
		techniques, such as neural networks,									
		deep learning, image processing, and									
		big data analytics, applied to geospatial									
		research. The course will focus on the									
						l	l				

NJSC "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I. SATPAYEV"

		practical use of AI for specific scientific and industrial problems, such as forecasting, automating geodetic surveys, improving spatial model quality, and developing intelligent decision support systems.						
2.	Geoinformation analysis for scientific research	Develop skills in applying geoinformatic analysis to solve scientific problems related to spatial data research and interpretation. Doctoral students will study methods of spatial analysis, geostatistics, spatial modeling, and data visualization, as well as their application to scientific and applied tasks. The course includes practical work with advanced GIS and spatial analysis software, aimed at studying earth processes, environmental monitoring, and resource management strategy development. PhD students will also learn methods for integrating spatial data with other information sources to create comprehensive models and maps.		v		v		
3.	Geomatics in the research of geospatial data	Develop skills in applying geomatics methods to analyze and interpret geospatial data with a focus on solving industrial problems. Doctoral students will study fundamental and advanced geomatics techniques, including remote sensing, GNSS technology, photogrammetry, and laser scanning, and their application in various fields. The emphasis will be on the scientific	5			v	v	

and practical use of these r address real industrial prob land resource management infrastructure monitoring, planning, and environment PhD students will also mas	lems, such as Irban al protection. ter			
specialized software for pr analyzing geospatial data.	ocessing and			

5. Curriculum of the educational program

Disciplin a code		84	of Educational acational program	Program in	- Provide	ent for 202-	or and many	partial sel-	r mens ⁿ		a manual o	K	C	2	2020 Vicent Internet
of COMPANY	Form of study: Juli-time Name of disciplines		Gree of study: 3 year Tutal volume in Academic classes	Total amount in credits	Total Bours	Classroo m amount lee/lab/pr	513 (includin	Form of control	Acad	emic degr ation of fi urns 2 annext	er i	3	2 000	5	and 6 semester
	W BASIC DISCIPLINES (BD)			todule of he	ale trafal	ag (anivers	ity compon	ent)			-		T	-	
METT22	Scientific research methods	BD UC	3	3	150	0/0/1	105	E	3		-	-			
MAP230	Audenic setting Geographic Information Systems and Machine Learning Intellectual property and the global market	BD CCHBD CCH	3	5	agonent	of choice 1/0/2 2/0/1	105	Е	3						
	Mathematical methods in geodesy					1/0/2									
CYCLE	F PROFILE DISCIPLINES (PD)		M-2. Mm	tule of profi	ensional a	etivity (cur	uppent of		T	-	T	1			
MAPER	trangention of Artificial Intelligence enter Decembrical Modeling	PD, CCH	3	3	1.30	1/0/2	105	9	5	-	-				
MAP327	Geoiedormation analysis for accentific essentials Geometrics in the research of geospatial data	PD, CCH	3	5	150	1/0/2	105	э	5						
		PDUC		M-3. P	rattice-	irlanted mu	naule.	1		20	,				
	industrial intership	10.00		M-4. Exp	eriment	research	module	1	5	1	T			1	T
AAF372 a	Experimental restarch work of doctoral madent, including internahipe and doctoral finantations	ERW/DS UC		10						1	0				-
AAP376 1	Imperimental research work of doctoral student, including internships and doctoral linertations	ERW/DS UC													
AAP374 #	Esperimental research work of doctoral sudent, including internalitys and doctoral fessertations	ERWDS UC		90								30	30	30	
AAF375	inpermental research work of dectoral tudent, including internihips and doctoral insertations	ERWD5 UC		18											18
-	toring and defending a doctoral			10000	Lodule u	final atter	Lation	1					T		12
a Anola	Vesting and defending a doctoral insertation	FA		12	-	_	_	-	-	30	31		30	30	30
Л	stal based on UNIVERSITY:						_	-	1	60			60		60
-	Number of cre Cyclin of disciplines	dits for th	e entire period o	fatudy		redita	-								
Cycle ende					university		Total								
				Ð	10 20 30	5	25								
PD G	yele of bane disciplines whe of profile disciplines Total for theoretical	tenining					123	-							
PD G	whe of enoble disciplines	TOTAL		12	30	15	12	-							